k_{eff}, Reaction Rates and Spectral Measurements in Critical Assemblies ## Stephanie C. Frankle Los Alamos National Laboratory October 20-22, 1999 LA-UR-99-5598 #### Abstract Recently, a suite of 86 criticality benchmarks for MCNP was developed and the results of testing the ENDF/B-V and ENDF/B-VI data (through Release 2) were published (LA-13594 and LA-13627). In addition to the standard $k_{\rm eff}$ measurements, a number of these benchmarks also had other experimental measurements performed on the assemblies. In particular, the CSEWG specifications contain experimental data for neutron leakage and central-flux measurements, central-fission ratio measurements, and activation ratio measurements. This presentation will present the results for the $k_{\rm eff}$ measurements for the ENDF/B-V, ENDF/B-VI and ENDL92 data libraries using MCNP. #### Critical Assemblies - k_{eff} - 86 critical assemblies - Neutron Central-flux and Leakage Spectra - Jezebel, Jezebel-23, Godiva, and Bigten - Central Reaction Rates - Fission, (n,), (n,), (n,p), (n,2n), (n,n') ## Validating Nuclear Data - 3 databases for neutron transport calculations - ENDF/B-V (early-mid 1980's, .50c and .55c) - ENDF/B-VI Release 2 (early 1990's, .60c) - ENDL92 LLNL (.42c) - Continuous-energy data libraries - Best representation of the evaluations - Monte Carlo code MCNP #### **ENDF** Evaluations - Most ENDF/B-VI.2 evaluations are new. Those that remained unchanged are: ²⁷Al, Ga, ^{182,183,184,186}W, ²³²Th, ^{233,234}U, and ²⁴²Pu - The only differences between data sets for the unchanged evaluations are from changes in the processing of the evaluation into an MCNP data file using NJOY and *should* not be significant. #### ENDF Evaluations cont. - Isotopic evaluations for Cr, Fe, Ni, and Cu - In the actinide region, ^{235,238}U and ^{239,241}Pu were completely updated, including an extension of the resonance region much higher in energy. - ²⁴⁰Pu is new relative to the ENDF/B-V data in the MCNP libraries. #### ENDL92 - Received at LANL in 1995 and documented in LA-UR-96-327, "Summary Documentation for the ENDL92 Continuous-energy Neutron Data Library" - Contains data for 106 nuclides - LANL modified data for Zn, Sn, Pt, and Hg - Does not have data for ²H, ⁹Be or ^{182,183,184,186}W we will use ENDF/B-VI for these nuclides #### 86 k_{eff} Benchmarks in 13 Categories - Bare spheres - Solutions - Water-reflected - Polyethylene-reflected - Be and Be-O reflected - Graphite-reflected - Aluminum-reflected - Steel and Ni-reflected - Tungsten-reflected - Thorium-reflected - Normal Uranium reflected - HEU-reflected - Other #### Notes - Benchmark specs: LA-13594 and ENDF Results: LA-13627 (on WWW) - Errors are given at the 2 level in the tables for k_{eff} - ICSBEP and CSEWG specifications - 5 benchmarks have more than one representation - For Flattop-23, a sphere of ²³³U reflected by normal uranium, the CSEWG specification contains a small gap between the main fuel and the reflector, whereas the ICSBEP specification has no gap. - ICSBEP specifications for Godiva contain both the standard sphere of HEU as well as nested spherical shells of HEU. - There are two specifications for the one- and two-dimensional models for Bigten, the water-reflected sphere of HEU, and the thorium-reflected sphere of ²³⁹Pu (Thor). - There are a total of 91 MCNP input files. #### Bare Spheres - ^{233,235}U and ²³⁹Pu - Think high energy (MeV)! - ENDF Comparisons - ²³³U shows little change as expected and calculates low - ²³⁸U tends to increase k and ²³⁵U tends to decrease k - The energy spectrum and ratio of ²³⁵U to ²³⁸U will determine the net effect - ²³⁹Pu shows little change - ENDL92 - Overall does a bit better for fast criticals ## Bare Spheres | MCNP Filename | Benchmark | ENDF/B-V | ENDF/B-VI R2 | ENDL92 | |---------------|---------------|---------------|---------------|---------------| | 23umt1 | 1.000±0.001 | 0.9942±0.0011 | 0.9931±0.0011 | 0.9974±0.0011 | | ieumt3 | 1.0000±0.0017 | 1.0051±0.0012 | 1.0005±0.0012 | 1.0021±0.0012 | | umet1ss | 1.000±0.001 | 0.9982±0.0011 | 0.9963±0.0012 | 1.0005±0.0012 | | umet1ns | 1.000±0.001 | 0.9975±0.0012 | 0.9968±0.0011 | 0.9997±0.0012 | | umet8 | 0.9989±0016 | 0.9942±0.0012 | 0.9918±0.0011 | 0.9948±0.0012 | | umet15 | 0.9996±0.0017 | 0.9931±0.0011 | 0.9925±0.0011 | 0.9957±0.0011 | | umet18 | 1.0000±0.0016 | 0.9984±0.0011 | 0.9969±0.0012 | 1.0012±0.0012 | | pumet1 | 1.000±0.002 | 0.9969±0.0012 | 0.9971±0.0010 | 0.9990±0.0011 | | pumet2 | 1.000±0.002 | 0.9979±0.0011 | 0.9992±0.0011 | 1.0031±0.0011 | | pumet22 | 1.0000±0.0021 | 0.9965±0.0011 | 0.9962±0.0011 | 0.9967±0.0012 | #### Solution Assemblies - Think thermal (10⁻⁸ MeV)! - ENDF Comparisons - With no exception, there is a significant decrease in k_{eff} from B-V to B-VI data libraries. - bad for ²³³U and ²³⁵U solutions and good for ²³⁹Pu solutions - New ¹H evaluation decreased k_{eff} by 0.0010±0.0001 - New ¹⁶O decreased k_{eff} by 0.0026 ± 0.0002 - No net effect due from new ¹⁴N evaluation - New ²³⁹Pu evaluation tended to decrease k_{eff} by 0.0033±0.0004 for solutions - New ²³⁵U evaluation made very little difference #### • ENDL92 Calculates far too high for ²³³U and ²³⁹Pu solutions (1.5-2%), and a ~0.5% high for ²³⁵U solutions. ## Solution Assemblies | MCNP Filename | Benchmark | ENDF/B-V | ENDF/B-VI R2 | ENDL92 | |---------------|---------------|---------------|---------------|---------------| | 23usl1a | 1.0000±0.0031 | 1.0010±0.0007 | 0.9967±0.0008 | 1.0158±0.0007 | | 23usl1b | 1.0005±0.0033 | 1.0004±0.0008 | 0.9966±0.0008 | 1.0156±0.0008 | | 23usl1c | 1.0006±0.0033 | 0.9997±0.0008 | 0.9969±0.0008 | 1.0146±0.0008 | | 23usl1d | 0.9998±0.0033 | 0.9993±0.0008 | 0.9962±0.0008 | 1.0150±0.0008 | | 23usl1e | 0.9999±0.0033 | 0.9984±0.0008 | 0.9956±0.0007 | 1.0143±0.0008 | | 23usl8 | 1.0006±0.0029 | 0.9987±0.0005 | 0.9954±0.0005 | 1.0109±0.0005 | | usol13a | 1.0012±0.0026 | 1.0007±0.0008 | 0.9972±0.0007 | 1.0084±0.0007 | | usol13b | 1.0007±0.0036 | 0.9993±0.0008 | 0.9964±0.0008 | 1.0070±0.0008 | | usol13c | 1.0009±0.0036 | 0.9952±0.0009 | 0.9922±0.0008 | 1.0042±0.0008 | | usol13d | 1.0003±0.0036 | 0.9981±0.0009 | 0.9957±0.0009 | 1.0055±0.0008 | | usol32 | 1.0015±0.0026 | 1.0003±0.0005 | 0.9966±0.0005 | 1.0036±0.0005 | | pnl1 | 1.0 | 1.0158±0.0013 | 1.0062±0.0012 | 1.0254±0.0013 | | pnl6 | 1.0 | 1.0089±0.0013 | 1.0020±0.0013 | 1.0119±0.0014 | | pusl11a | 1.0000±0.0052 | 1.0019±0.0011 | 0.9951±0.0011 | 1.0128±0.0011 | | pusl11b | 1.0000±0.0052 | 1.0084±0.0012 | 0.9998±0.0011 | 1.0180±0.0011 | | pusl11c | 1.0000±0.0052 | 1.0137±0.0013 | 1.0045±0.0012 | 1.0226±0.0012 | | pusl11d | 1.0000±0.0052 | 1.0182±0.0012 | 1.0085±0.0012 | 1.0265±0.0013 | #### Water-Reflected Assemblies - ENDF Comparisons - For the water-reflected HEU sphere, hydrogen and oxygen lowered $k_{\rm eff}$ and the ^{235}U evaluation increased $k_{\rm eff}$ net result of no significant change - For the water-reflected Pu sphere, H and O lowered k_{eff} - ENDL92 is a bit higher for water-reflected HEU sphere | MCNP Filename | Benchmark | ENDF/B-V | ENDF/B-VI R2 | ENDL92 | |---------------|---------------|---------------|---------------|---------------| | umet4a | 1.002 | 0.9999±0.0014 | 1.0010±0.0015 | 1.0036±0.0014 | | umet4b | 1.0003±0.0005 | 0.9967±0.0015 | 0.9969±0.0015 | 0.9998±0.0014 | | pumet11 | 1.0000±0.001 | 1.0009±0.0014 | 0.9984±0.0014 | 0.9985±0.0015 | #### CH₂ and Graphite-Reflected Assemblies - ENDF Comparisons - Seen previously that new \overline{H} evaluation tends to lower $k_{\rm eff}$ - No change in k_{eff} because of new C evaluation - Decrease in k_{eff} for all of the IEU assemblies due to the changes in the ^{235}U evaluation (-0.0042±0.0003) - Better result for graphite-reflected U assemblies though still a little high - ENDL92 a little high for graphite-reflected U assemblies ## CH₂ and Graphite-Reflected Assemblies | MCNP Filename | Benchmark | ENDF/B-V | ENDF/B-VI R2 | ENDL92 | |---------------|---------------|---------------|---------------|---------------| | umet11 | 1.000±0.001 | 0.9924±0.0014 | 0.9954±0.0014 | 1.0000±0.0015 | | umet20 | 1.0000±0.0030 | 0.9958±0.0013 | 0.9972±0.0013 | 1.0005±0.0013 | | pumet24 | 1.0000±0.0020 | 0.9981±0.0013 | 1.0009±0.0012 | 0.9998±0.0012 | | | | | | | | ieumt4 | 1.0000±0.0030 | 1.0091±0.0012 | 1.0051±0.0012 | 1.0065±0.0012 | | umet19 | 1.0000±0.0030 | 1.0040±0.0012 | 1.0031±0.0012 | 1.0077±0.0012 | | pumet23 | 1.0000±0.0020 | 0.9973±0.0012 | 0.9973±0.0012 | 1.0010±0.0012 | #### Be and BeO-Reflected Assemblies - ENDF Comparisons - Sensitivity studies show that changes in the new Be evaluation do not significantly affect the calculations - the new ^{16}O evaluation lowers k_{eff} by 0.0039 ± 0.0006 for the two BeO benchmarks - ENDL92 results use the ENDF/B-VI data for Be. #### Be and BeO-Reflected Assemblies | MCNP Filename | Benchmark | ENDF/B-V | ENDF/B-VI R2 | ENDL92 | |---------------|---------------|---------------|---------------|---------------| | 23umt5a | 1.0000±0.0030 | 0.9940±0.0012 | 0.9962±0.0012 | 0.9984±0.0012 | | 23umt5b | 1.0000±0.0030 | 0.9955±0.0013 | 0.9967±0.0014 | 1.0016±0.0013 | | umet9a | 0.9992±0.0015 | 0.9927±0.0012 | 0.9958±0.0012 | 0.9952±0.0012 | | umet9b* | 0.9992±0.0015 | 0.9962±0.0012 | 0.9936±0.0012 | 0.9975±0.0012 | | pumet18 | 1.0000±0.0030 | 0.9999±0.0013 | 0.9999±0.0012 | 0.9978±0.0013 | | pumet19 | 0.9992±0.0015 | 1.0016±0.0013 | 1.0032±0.0012 | 0.9986±0.0013 | | pumt21a | 1.0000±0.0026 | 1.0033±0.0013 | 1.0042±0.0013 | 1.0021±0.0013 | | pumt21b* | 1.0000±0.0026 | 0.9970±0.0012 | 0.9945±0.0012 | 0.9961±0.0013 | ## With a different initial random number, the differences for 23umt5a and umet9a disappear. | MCNP Filename | Benchmark | ENDF/B-V | ENDF/B-VI R2 | |---------------|---------------|---------------|---------------| | 23umt5a | 1.0000±0.0030 | 0.9940±0.0012 | 0.9941±0.0012 | | umet9a | 0.9992±0.0015 | 0.9927±0.0012 | 0.9958±0.0012 | #### Aluminum-Reflected Assemblies - ENDF Comparisons - No change in the Al evaluation between B-V and B-VI - The largest change in k_{eff} is for *ieumt6*, which shows a decrease similar to that seen for the other IEU assemblies from ²³⁵U - ENDL92 shows similar results to ENDF | MCNP Filename | Benchmark | ENDF/B-V | ENDF/B-VI R2 | ENDL92 | |---------------|---------------|---------------|---------------|---------------| | ieumt6 | 1.0000±0.0023 | 0.9964±0.0012 | 0.9917±0.0012 | 0.9912±0.0011 | | umet12 | 0.9992±0.0018 | 0.9932±0.0011 | 0.9941±0.0012 | 0.9935±0.0012 | | umet22 | 1.0000±0.0021 | 0.9919±0.0012 | 0.9924±0.0012 | 0.9943±0.0012 | | pumet9 | 1.0000±0.0027 | 1.0003±0.0012 | 1.0022±0.0011 | 1.0007±0.0011 | #### Steel and Ni-Reflected Assemblies #### ENDF Comparisons - New isotopic evaluations for of Cr, Fe, Ni, and Cu - The steel-reflected assemblies show a consistent decrease in k_{eff} from B-V to B-VI data. Sensitivity studies showed that there was an average decrease in k_{eff} for iron of 0.0048±0.0006 for these benchmarks - For Ni, studies indicated that the new evaluations decreased $k_{\rm eff}$ by 0.0104 \pm 0.0014, moving it closer to the benchmark value - ENDL92 results for steel-reflected assemblies are quite high (proportional to size of reflector). ## Steel and Ni-Reflected Assemblies | MCNP Filename | Benchmark | ENDF/B-V | ENDF/B-VI R2 | ENDL92 | |-------------------|---------------|---------------|---------------|---------------| | ieumt5 - 8.25 cm | 1.0000±0.0021 | 1.0112±0.0011 | 1.0007±0.0012 | 1.0403±0.0013 | | umet13 - 3.65 cm | 0.9990±0.0015 | 0.9982±0.0012 | 0.9941±0.0013 | 1.0103±0.0012 | | umet21- 9.7 cm | 1.0000±0.0026 | 1.0023±0.0012 | 0.9947±0.0012 | 1.0390±0.0013 | | pumet25 - 1.55 cm | 1.0000±0.0020 | 0.9984±0.0012 | 0.9963±0.0012 | 0.9960±0.0012 | | pumet26- 11.9 cm | 1.0000±0.0024 | 1.0016±0.0012 | 0.9971±0.0012 | 1.0320±0.0013 | | | | | | | | umet3l - 20.32 cm | 1.0000±0.0030 | 1.0148±0.0013 | 1.0049±0.0012 | 1.0061±0.0013 | ## Tungsten-Reflected Assemblies #### ENDF Comparisons - The evaluations for tungsten isotopes are equivalent for B-V (.55c) and B-VI (.60c) data. - k_{eff} is running slightly high for all benchmarks, and more so for the thickest W-reflected U and the Pu assembly. - Only *umet3h* shows a significant change in $k_{\rm eff}$. We ran the B-VI version of this benchmark using a different starting random number. The result was a $k_{\rm eff}$ of 1.0049±0.0006, indicating that the drop in $k_{\rm eff}$ was a statistical fluctuation. - ENDL92 results use ENDF/B-VI data for W isotopes. ## W-Reflected Assemblies | MCNP Filename | Benchmark | ENDF/B-V | ENDF/B-VI R2 | ENDL92 | |-------------------|---------------|---------------|---------------|---------------| | 23umt4a - 2.44 cm | 1.0000±0.0007 | 1.0037±0.0012 | 1.0031±0.0012 | 1.0039±0.0012 | | 23umt4b - 5.79 cm | 1.0000±0.0008 | 1.0059±0.0013 | 1.0049±0.0012 | 1.0071±0.0013 | | umet3h - 4.83 cm | 1.0000±0.0050 | 1.0055±0.0013 | 1.0065±0.0013 | 1.0066±0.0011 | | umet3i - 7.37 cm | 1.0000±0.0050 | 1.0053±0.0012 | 1.0066±0.0013 | 1.0073±0.0012 | | umet3j - 11.43 cm | 1.0000±0.0050 | 1.0056±0.0012 | 1.0068±0.0013 | 1.0072±0.0012 | | umet3k - 16.51 cm | 1.0000±0.0050 | 1.0089±0.0012 | 1.0094±0.0014 | 1.0091±0.0012 | | pumet5 - 4.70 cm | 1.0000±0.0013 | 1.0080±0.0013 | 1.0102±0.0012 | 1.0047±0.0012 | #### Thorium-Reflected Assemblies - There are 1D and 2D representations of Thor - ENDF Comparisons - No change in evaluation for ²³²Th - The slight increase in k_{eff} follows the same pattern that we have seen for the Jezebel and Jezebel-Pu assemblies (pumet1 and pumet2). - ENDL92 closer to benchmark values. | MCNP Filename | Benchmark | ENDF/B-V | ENDF/B-VI R2 | ENDL92 | |---------------|---------------|---------------|---------------|---------------| | pumet8a | 1.0000±0.0030 | 1.0042±0.0012 | 1.0064±0.0012 | 0.9992±0.0011 | | pumet8b | 1.000±0.0006 | 1.0045±0.0013 | 1.0072±0.0012 | 1.0004±0.0012 | #### Normal Uranium Reflected Assemblies - ENDF Comparisons - Half of the assemblies show a change in the calculated k_{eff} of more than 2 . - Changes in both the ²³⁵U and ²³⁸U evaluations have competing effects. - On average, the change in the ²³⁵U evaluation caused a decrease in k_{eff} of 0.0022±0.0002, while the changes in the ²³⁸U evaluation caused an increase in k_{eff} of 0.0012±0.0002 - ENDL92 calculates quite low for Bigten assembly. ## U(N)-Reflected Assemblies | MCNP Filename | Benchmark | ENDF/B-V | ENDF/B-VI R2 | ENDL92 | |---------------|---------------|---------------|---------------|---------------| | 23umt3a | 1.0000±0.0010 | 0.9974±0.0011 | 0.9971±0.0011 | 1.0017±0.0012 | | 23umt3b | 1.0000±0.0010 | 0.9983±0.0012 | 0.9991±0.0012 | 1.0051±0.0012 | | 23umt6 | 1.0000±0.0014 | 0.9992±0.0013 | 0.9997±0.0014 | 1.0012±0.0014 | | flat23 | 1.000±0.001 | 1.0030±0.0013 | 1.0034±0.0013 | 1.0035±0.0013 | | ieumt2 | 1.000±0.003 | 1.0081±0.0011 | 1.0034±0.0011 | 0.9947±0.0011 | | umet3a | 1.0000±0.0050 | 0.9954±0.0012 | 0.9920±0.0012 | 0.9944±0.0012 | | umet3b | 1.0000±0.0050 | 0.9956±0.0012 | 0.9936±0.0012 | 0.9950±0.0013 | | umet3c | 1.0000±0.0050 | 1.0006±0.0013 | 0.9979±0.0013 | 0.9969±0.0011 | | umet3d | 1.0000±0.0030 | 0.9984±0.0012 | 0.9950±0.0012 | 0.9964±0.0013 | | umet3e | 1.0000±0.0030 | 1.0029±0.0012 | 1.0014±0.0013 | 0.9982±0.0013 | | umet3f | 1.0000±0.0030 | 1.0018±0.0012 | 1.0006±0.0013 | 0.9970±0.0013 | | umet3g | 1.0000±0.0030 | 1.0039±0.0013 | 1.0019±0.0013 | 0.9964±0.0012 | | umet14 | 0.9989±0.0017 | 0.9972±0.0013 | 0.9957±0.0012 | 0.9971±0.0012 | | umet28 | 1.0000±0.0030 | 1.0030±0.0012 | 1.0027±0.0013 | 0.9995±0.0013 | | bigten1 | 0.996±0.003 | 1.0059±0.0010 | 1.0069±0.0010 | 0.9831±0.0010 | | bigten2 | 0.996±0.003 | 1.0035±0.0009 | 1.0045±0.0009 | 0.9808±0.0009 | | pumet6 | 1.0000±0.0030 | 1.0039±0.0013 | 1.0040±0.0014 | 1.0008±0.0013 | | pumet10 | 1.0000±0.0018 | 0.9984±0.0012 | 1.0005±0.0012 | 1.0018±0.0012 | | pumet20 | 0.9993±0.0017 | 0.9998±0.0012 | 0.9997±0.0013 | 1.0008±0.0012 | #### HEU-Reflected Assemblies - The first two benchmarks, 23umt2a and 23umt2b, have a ²³³U core, while mixmet1 and mixmet3 have a ²³⁹Pu core. - ENDF Comparisons - ²³³U did not change from B-V to B-VI. - The larger the HEU reflector, the larger the decrease in $k_{\rm eff}$. - ENDL92 consistently calculates higher than ENDF for these benchmarks usually closer to benchmark. | MCNP Filename | Benchmark | ENDF/B-V | ENDF/B-VI R2 | ENDL92 | |---------------|---------------|---------------|---------------|---------------| | 23umt2a | 1.0000±0.0010 | 0.9952±0.0011 | 0.9961±0.0011 | 1.0017±0.0012 | | 23umt2b | 1.0000±0.0011 | 0.9991±0.0011 | 0.9968±0.0011 | 1.0037±0.0012 | | mixmet1 | 1.0000±0.0016 | 0.9966±0.0012 | 0.9969±0.0012 | 0.9993±0.0011 | | mixmet3 | 0.9993±0.0016 | 1.0000±0.0012 | 0.9979±0.0012 | 1.0008±0.0013 | #### Other Assemblies • The *ieumt1* (Jemima) series of benchmarks are cylindrical disks of HEU and normal uranium. The MCNP model is slightly idealized, but still maintains the heterogeneous description of the disks. It has been shown that performing a criticality calculation using a homogenous material gives too large a discrepancy in k_{eff}. #### ENDF – The changes to the ^{235}U evaluation tend to decrease k_{eff} for the Jemima assemblies (-0.0032±0.0004), and are greater than changes in k_{eff} due the new ^{238}U evaluation. #### Other Assemblies Cont. - The *mixmet8* assembly is a rectangular graphite- and normal uranium-reflected slab of ²³⁹Pu - There is a large discrepancy in the mixmet8 calculations from ²³⁸U. - ENDF: Sensitivity tests showed that there was little effect from the new evaluations for 235 U, 239 Pu, and 54,56,57,58 Fe, but that the 238 U evaluation increased k_{eff} by 0.0265 ± 0.0007 . - Improvements to the data through the resonance region substantially improve the ²³⁸U evaluation. ## Other Critical Assemblies | MCNP Filename | Benchmark | ENDF/B-V | ENDF/B-VI R2 | ENDL92 | |---------------|---------------|---------------|---------------|---------------| | mixmet8 | 0.9920±0.0063 | 0.9591±0.0009 | 0.9918±0.0010 | 0.8690±0.0008 | | ieumt1a | 0.9989 | 1.0024±0.0012 | 0.9961±0.0012 | 0.9988±0.0012 | | ieumt1b | 0.9997 | 1.0018±0.0012 | 0.9974±0.0012 | 1.0006±0.0012 | | ieumt1c | 0.9993 | 1.0035±0.0012 | 0.9988±0.0012 | 1.0007±0.0011 | | ieumt1d | 1.0002 | 1.0039±0.0012 | 0.9984±0.0012 | 1.0010±0.0012 | ## mixmet8 MCNP Geometry - k benchmark - Graphite (C) and normaluranium(U) reflected Pu slab. - The outer surfaces of the MCNP geometry in the figure are periodic. The outer surface normal to the y-axis, which is not shown, is reflective. #### Neutron Flux in U-reflector of mixmet8 ## k_{eff} Summary (1) - Fast Systems - ENDF ²³³U unchanged and calculates low (0.5%) - New ENDF/B-VI R2 evaluations for ²³⁵U tends to increase k_{eff} while the new ²³⁸U tends to decreases k_{eff} - Energy spectrum and ratio of ²³⁵U to ²³⁸U determines net effect - 239Pu shows a very slight increase - ENDL92 calculates fast critical assemblies a bit better than ENDF ## k_{eff} Summary (2) - Thermal systems - New ENDF for ¹H and ¹⁶O decrease k_{eff} by 0.1% and 0.26% respectively - New ENDF ¹⁴N and ²³⁵U have no effect - New ENDF ²³⁹Pu decreases k_{eff} by 0.33% - ENDL92 calculates very high (avg. 1.4%) - Important to use proper S(,) data for thermal upscatter (water, poly, ...) ## k_{eff} Summary (3) - New ENDF carbon shows no effect for CH₂ and graphite-reflected systems, while ENDL92 calculates high (1%) for graphite-reflected U systems - New ENDF H tends to lower k_{eff} - New ENDF ⁹Be evaluation does not impact k_{eff}, but new ¹⁶O decreases k_{eff} by 0.4% for BeO-reflected systems - New ENDF isotopic evaluations for Fe and Ni decrease $k_{\rm eff}$ by 0.5% and 1% respectively. For Ni this greatly improves the calculated $k_{\rm eff}$. - ENDL92 calculates very high, 2.3% for Fe and 0.6% for Ni. ## k_{eff} Summary (4) - No significant differences between libraries for Alreflected assemblies, ~0.5% low - No significant differences between ENDF libraries for W-reflected assemblies, ~0.6% high - ENDF Th-reflected assembly is ~0.5% high, while ENDL92 is close to 1.0 - New ENDF evaluation for ²³⁸U significantly improves the mixed-metal assembly (mixmet8), ENDL92 does a very poorly (~13% low)